Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Liu, ${ }^{\text {a }}$ Yuan Ma, ${ }^{\text {a }}$ Ru-Ji Wang, ${ }^{\text {b }}$ Ying-Wu Yin ${ }^{\text {b }}$ and Yu-Fen Zhao ${ }^{\text {a }}$
${ }^{\text {a K Key Laboratory for Bioorganic Phosphorus }}$ Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
Correspondence e-mail:
liu-wei03@mails.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.047$
$w R$ factor $=0.107$
Data-to-parameter ratio $=7.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Diethyl-4,4'-dinitrohydrazobenzene

There are two independent molecules, A and B, in the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$, and the asymmetric unit consists of one molecule A and one half-molecule B; a twofold axis runs through the centre of the $\mathrm{N}-\mathrm{N}$ bond of molecule B. The crystal structure is stabilized mainly by van der Waals forces.

Comment

In order to obtain more detailed information on the structural conformation of the title compound, (I), which may be useful for structure-activity relationship investigations, the X-ray crystal structure determination of (I) has been carried out and the results are presented here.

(I)

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. There are two independent molecules, A and B, in the crystal structure of (I). The asymmetric unit consists of one molecule A and half of molecule B; a twofold axis runs through the centre of the $\mathrm{N}-\mathrm{N}$ bond of molecule B.

The main conformational difference between molecules A and B is the twist about the $\mathrm{N}-\mathrm{N}$ bond. Comparison of the torsion angles around the $\mathrm{N}-\mathrm{N}$ bonds shows some differences between molecules A and $B: \mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$ and $\mathrm{C} 13-$ $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 15$ for molecule A are -134.4 (4) and $-56.7(5)^{\circ}$, respectively, whereas $\mathrm{C} 17-\mathrm{N} 5-\mathrm{N} 5^{\mathrm{i}}-\mathrm{C} 17^{\mathrm{i}}$ and $\mathrm{C} 23-\mathrm{N} 5-$ $\mathrm{N} 5^{\mathrm{i}}-\mathrm{C} 23^{\mathrm{i}}$ [symmetry code: (i) $1-x,-y, z$] for molecule B are -86.2 (4) and $-34.4(4)^{\circ}$, respectively. The two benzene rings in each molecule are not coplanar; the dihedral angles between the planes of the rings are 66.3 (1) and 83.3 (1) ${ }^{\circ}$ in molecules A and B, respectively.

The $\mathrm{N}-\mathrm{N}$ bond distance is 1.421 (4) and 1.403 (6) \AA in molecules A and B, respectively. The value found in free $2,4-$ dinitrophenylhydrazine is 1.405 (4) \AA (Okabe et al., 1993), and $1.449 \AA$ A in hydrazine (Morino et al., 1960). The sums of the angles around the N atoms are 350.1° for atom $\mathrm{N} 1,343.6^{\circ}$ for atom N2 and 354.5° for atom N5.

Experimental

The reaction was performed at a controlled anode potential of 1.5 V versus SCE (saturated calomel electrode) in an undivided cell with

Received 22 August 2005 Accepted 24 August 2005 Online 31 August 2005
platinum plate electrodes having an area of $3 \mathrm{~cm}^{2}$ and a magnetic stirrer bar in the cell, at room temperature, in methanolic sodium cyanide solution (N, N-diethyl-o-nitroaniline, 0.02 M ; cyanide, $0.08 \mathrm{M})$. The reaction was terminated after passage of $3 \mathrm{~F} \mathrm{~mol}^{-1}$ of added amine. The electrolyte was worked up by distillation of the methanol. Saturated aqueous NaCl was then added and the mixture was extracted with diethyl ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product was purified by column chromatography on silica gel (ethyl acetate-petroleum ether 1:5). It was crystallized from a mixture of ethyl acetate and petroleum ether (m.p. 395 K). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): $7.68(d d, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(t, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(d, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(t, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.42(d d, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.19(t, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): 141.9, 139.9, 132.8, 126.3, 120.7, 119.2, 46.2, 12.7.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$

$M_{r}=330.34$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=7.8212$ (16) \AA
$b=46.154$ (4) \AA
$c=6.7885$ (8) \AA
$V=2450.5(6) \AA^{3}$
$Z=6$
$D_{x}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker $P 4$ diffractometer

ω scans

Absorption correction: none 6045 measured reflections 2550 independent reflections 1594 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.070$

Mo $K \alpha$ radiation

Cell parameters from 60

reflections

$\theta=1.8-12.5^{\circ}$
$\begin{aligned} \theta & =1.8-12.5 \\ \mu & =0.10 \mathrm{~mm}^{-1}\end{aligned}$
$T=295$ (2) K
Prism, red
$0.4 \times 0.4 \times 0.2 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-54 \rightarrow 54 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.107$
$S=1.03$
2550 reflections
325 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.001 P)^{2}+P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.394(5)$	$\mathrm{N} 5-\mathrm{C} 17$	$1.398(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.420(4)$	$\mathrm{N} 5-\mathrm{N} 5^{\mathrm{i}}$	$1.405(6)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.487(5)$	$\mathrm{N} 5-\mathrm{C} 23$	$1.504(7)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.412(5)$		
			$114.4(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$114.7(3)$	$\mathrm{C} 17-\mathrm{N} 5-\mathrm{N} 5^{\mathrm{i}}$	$120.9(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 13$	$118.6(3)$	$\mathrm{C} 17-\mathrm{N} 5-\mathrm{C} 23$	$119.1(2)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 13$	$116.8(3)$	$\mathrm{N} 5^{\mathrm{i}}-\mathrm{N} 5-\mathrm{C} 23$	$113.3(4)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	$113.0(3)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$112.7(4)$
C7-N2-C15	$118.2(3)$	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{C} 16$	$110.9(5)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 15$	$112.4(3)$	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{N} 5$	
			$157.5(4)$
C1-N1-N2-C7	$-134.4(4)$	$\mathrm{N} 5^{\mathrm{i}}-\mathrm{N} 5-\mathrm{C} 17-\mathrm{C} 18$	$-19.3(6)$
C13-N1-N2-C7	$80.3(4)$	$\mathrm{N} 5^{\mathrm{i}}-\mathrm{N} 5-\mathrm{C} 17-\mathrm{C} 22$	$143.3(5)$
C13-N1-N2-C15	$-56.7(5)$	$\mathrm{C} 17-\mathrm{N} 5-\mathrm{C} 23-\mathrm{C} 24$	$-64.3(6)$
C7-N2-C15-C16	$147.1(4)$	$\mathrm{N} 5^{\mathrm{i}}-\mathrm{N} 5-\mathrm{C} 23-\mathrm{C} 24$	-

Symmetry code: (i) $-x+1,-y, z$.
H atoms were positioned geometrically and refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic $\mathrm{CH}, 0.97 \AA$ for

Molecule A

Molecule B
Figure 1
The two independent molecules, A and B, of (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary size. Unlabelled atoms in molecule B are related to labelled atoms by the symmetry operator $(1-x,-y, z)$.
CH_{2} and $0.96 \AA$ for methyl groups. Isotropic displacement parameters for the H atoms were set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic and methylene H atoms and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups.

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from Beijing TH-UNIS-Insight Co. Ltd. and the Chinese National Science Foundation (grant No. 20132020), the Ministry of Science and Technology, the Chinese Ministry of Education, and Tsinghua University.

References

Bruker (1997). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Morino, V., Iijima, T. \& Murata, Y. (1960). Bull. Chem. Soc. Jpn, 33, 46-48. Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.

